constraint qualifications造句
例句與造句
- Constraint qualifications and dual problems for quasi - differentiable programming
擬可微規(guī)劃的約束規(guī)范和對偶問題 - A note on constraint qualifications for a class of nondifferentiable programming problems
關(guān)于一類不可微規(guī)劃問題約束品性的一個注記 - Constraint qualification in a general class of nondifferentiable mathematical programming problems
關(guān)于一類不可微非線性規(guī)劃的約束品性 - But j . v . outrata , m . kocvara , et . al . pointed out in 1998 that the equivalent ssnp did n ' t satisfy the weaker mangasarian - fromotitz constraint qualification in any feasible points . so it will be very difficult to get the solution of lcp by means of existing methods for ssnp such as sequential quadratic programming ( sqp for short ) type algorithms , sequential systems of linear equations ( ssle for short ) type algorithms
Kocvara等人在1998年指出了等價(jià)的ssnp在任何可行點(diǎn)處都不滿足比較弱的mangasarian - fromotitz約束規(guī)格,因此,通過用已有的求解ssnp的一些方法如序列二次規(guī)劃(簡記為sqp )類算法、序列線性方程組(簡記為ssle )類算法解等價(jià)的ssnp來獲得線性互補(bǔ)約束問題的解,會有相當(dāng)?shù)睦щy - Section 4 is devoted to give some new iterative algorithms with errors . with some noncompact constraint qualifications , we prove the existence of solution for the generalized nonlinear fuzzy quasi - variational - like inclusions involving maximal - monotone mappings and the convergence of iterative sequences generated by the iterative algorithms . in the last , we discuss the convergence and stability of perturbed iterative algorithm for solving a class of generalized nonlinear quasi - variational - like inclusions involving maximal - monotone mappings
第四部分,首先給出一些新的含誤差的迭代算法,然后證明這類含-極大單調(diào)映象的廣義非線性模糊擬似變分包含在非緊條件下的解的存在性和由此類迭代算法產(chǎn)生的迭代序列的收斂性;第五部分,我們討論了求解一類含-極大單調(diào)映象的廣義非線性擬似變分包含的擾動迭代算法的收斂性和穩(wěn)定性。 - It's difficult to find constraint qualifications in a sentence. 用constraint qualifications造句挺難的
- Section 3 is devoted to the stablities for the perturbed generalized equations . with some constraint qualifications , the pseudo - lipschitz continuities for solution mappings of generalized equations at the solutions is obtained , which implicits the pseudo - upper - lipschitz continuity at the same points . in the last , we derive necessary optimal conditions for optimal problems with quasi - variational inequalities
第三節(jié)主要是對廣義方程的擾動穩(wěn)定性進(jìn)行研究,得到了在假設(shè)條件下,廣義方程解映像的局部lipschitz連續(xù)性質(zhì),它隱含了廣義方程解映像是偽上lipschitz連續(xù)的;最后,我們得到了具擬變分不等式約束的優(yōu)化問題解的必要最優(yōu)條件